
due to the viscous flow strength of the fluid in the crack. This feature fundamentally dis- 
tinguishes porous material rupture by a viscous fluid from homogeneous material rupture (for 
example, PMMA [4]). 

It is clear from Figs. 5 and 6 that during rupture of a porous medium, just as for frac- 
ture of a nonporous one [4], there is a delay of the fluid front in the crack from its vertex 
("spout"). However, the delay is more significant in the porous medium and grows with de- 
creasing strength properties of the medium. 

In conclusion, we note that a reduction of the viscosity of the working fluid, an in- 
crease in the percolation permeability of the porous medium and its strength leads to a 
decrease in the rupture zone dimensions. This is due to the growth of percolation loss and 
the quasi-brittle tensile strength of the medium. 
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DO BRITTLE AND PLASTIC MATERIALS DIFFER WHEN SPALLING? 

A. G. Ivanov and V. A. Ogorodnikov UDC 620.178.7 

We examine the energy description of spalling for brittle and plastic materials. We 
cite experimental data which justifies the use of one and the same relations for these ma- 
terials. 

Advances in fracture mechanics have demonstrated the fruitfulness of the energy approach 
in the description of brittle fracture. However, direct use of fracture mechanics is made 
difficult by the peculiarities of material fracture during spalling. Therefore, in [i], an 
attempt was made to use the balance of the elastic strain energy and the work of brittle 
fracture of the material as the necessary condition for failure, without imposing any sort 
of limitation on the failure mechanism itself. 

This necessary condition can be written in the form 

6 

~e~ ~ ,  (1) 
AE 

0 

where o is the tensile stress; x is the coordinate, reckoned from the free surface of the ma- 
terial; E is Young's modulus; ~ the specific work of brittle material fracture per unit area; 
A is a function of Poisson's ratio v, equal to 2(1 - ~)[(i + 9)(i - 2v)] -~. 

It follows from (i) that the fracture stress of and the thickness Of the spallation 
layer of material 6 are related by the inequality 

o~ ~> ~EA. (2) 
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Here, the coefficient a lies in the range from 1 to 3, and depends on the form of the inci- 
dent pressure pulse. Thus, a triangular pulse corresponds to a = 3, and a square pulse to 

= i. We assume that (I) is also sufficient, since during spall, fracture is simultaneously 
initiated at a large number of points.* 

In [I], by using dp/dt = of/26 = E$/2, (i) is written for a triangular pulse in the 
form 

~f = (6~wpdp/dt) 1/3 = (3pcE%8)t/3~ (3 )  

whe re  d p / d t  i s  t h e  p r e s s u r e  d e c a y  r a t e  b e h i n d  t h e  i n c i d e n t  wave f r o n t ;  ~ i s  t h e  s t r a i n  r a t e  
i n  t h e  t e n s i l e  wave ;  p and c a r e  t h e  d e n s i t y  and sound s p e e d  i n  an unbounded  medium. 

Somewhat l a t e r ,  a s i m i l a r  a p p r o a c h  f o r  d e s c r i b i n g  m a t e r i a l  f r a g m e n t a t i o n  d u r i n g  b u l k  
d i l a t a t i o n ,  and a l s o  d u r i n g  s p a l l  was u s e d  in  [ 3 ] .  The c o r r e s p o n d i n g  e q u a t i o n  f o r  d e s c r i p -  
t i o n  o f  s p a l l  i n  b r i t t l e  m a t e r i a l s  was o b t a i n e d  in  t h e  fo rm 

= V 
Since K& = 2yE, and the magnitude of surface formation energy 2~ is analogous to %, formulas 
(3) and (4) coincide.% 

Being convinced that the descriptions of brittle materials in [i, 3] are identical, we 
turn to the description of plastic materials during spall. The concept of a brittle or 
plastic material is connected with material behavior during fracture. Without losing general- 
ity, for simplicity we limit consideration to materials with a bilinear stress-strain rela- 
tion of the form o = eE for ~ ~ e eando = o e + (e - ~e(M for g ~Ee (o e and ~e are the 
maximum values of o and e in the elastic region, and M is the strength modulus). 

In a macroscopic treatment (without analysis of the fracture surface), the material 
is usually assumed to be brittle, if in the standard static tensile test conditions, it frac- 

tures for Ef ~e, and plastic if sf > E e. 

Note that this division is conditional. It is well known that material becomes more 
brittle with increasing test sample size, and with diminishing size, a brittle material can 
acquire plastic properties and fracture for of < o e. Thus, the property of material plas- 
ticity or brittleness depends not only on temperature, strain rate and stress state, but also 
depends essentially on the size of the test sample [4]. 

During static elongation of samples of brittle and plastic materials, there is a sig- 
nificant difference in their failure. The failure of a brittle material takes place at the 
expense of elastic strain energy by passage of rapidly propagating cracks virtually in condi- 
tions of one-dimensional strain for of < o e. The elastic strain energy is insufficient for 
failure of a plastic material. Before failure of a plastic material sample, the energy ex- 
pended in plastic deformation of the entire sample is, as a rule, much greater than the 
energy spent directly on material division. The fracture process takes place in a uniaxial 
state. Does there remain such a significant difference between brittle and plastic materials 
undergoing shock-wave fracture by spallation? We say, no. Such an assertion is based on two 
reasons connected with shock-wave loading: the sharp increase in elastic strain energy and 
the small amount of energy being dissipated in plastic flow of the material in comparison 
with the elastic strain energy. Let us examine these reasons. 

i. In view of the one-dimensional deformation of the material, the effective yield 
point grows by a factor of k I = (i - v)(l - 2v) -I. For ~ = 0.3, k I = 1.75. As a consequence 
of the dynamic nature of loading, o e increases with growth in e up to -104-105 sec -l for many 
materials (for soft steels, up to k 2 = 4.5 times). Thus the effective value of o e and the 
elastic strain energy tend to grow sufficiently rapidly to transfer the material from plastic 
to the brittle classification in the above-considered sense. So, the effective value of o e 
for soft steel increases by k = kzk 2 = 8 times, and the elastic strain energy (assuming 

*In the limiting case of the interaction of rarefaction waves, the characteristic separation 
between initiation points can be estimated as -10 -6 m [2]. 
~The numerical agreement of the coefficients in (3) and (4) is evidently a coincidence. In 
[3], the ratio of the fracture surface area per unit volume was taken as 6/6. For the one- 
dimensional case characterizing spall, this ratio is too small by a factor of three. In addi- 
tion, the growth of stress with coordinates in the tensile wave was not taken into account. 
Therefore a difference in coefficients of a factor of 2-3 would be acceptable. 
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unchanging E) by a factor of 64. The threshold brittleness* of this material decreases from 
640 to i0 mm. Thus during spall failure, soft steel must behave as a brittle material. 

2. In the strong shock wave interval, for which spallation is possible (o > Oe), the 
energy dissipation in plastic flow is low. Two facts serve as evidence for this assertion: 
the conservation law of the doubling of the bulk material velocity during normal shock wave 
reflection from a free surface, and experiments on direct measurement of the hysteresis loop 
during shock loading and subsequent relief. So, for a typical representative of plastic 
materials (copper), the divergence of the shock and cold compression curves in the pressure- 
compression plane and as a consequence, violation of the doubling law, must be expected for 
p > 40 GPa. This is significantly higher than the spall stress interval. A similar picture 
characterizes soft aluminum and other plastic materials. 

Information on the magnitude of the hysteresis loop during shock compression and subse- 
quent relief, for example, for polycarbonate, was given in [5]. For compression up to p ~ 
0.5 GPa, which is a few times larger than the spall stress, this value does not exceed 4%. 
A similar estimate for aluminum can be obtained from [6]. And here the hysteresis loop is 
several times smaller than the elastic strain energy. 

These considerations give a basis for a descritpion of spall fragmentation of plastic 
materials (under normal conditions) similar to that considered for brittle materials. For 
both plastic and brittle materials, one can expect manifestation of scale effects of an 
energy nature, that is, relations (1)-(4) will be valid. 

The approach adopted here to distinguish brittle from plastic materials is not unique. 
For their criteria, the form of the microdefects, the development, growth, and 
coalescense of which leads to formation of fracture surfaces in the material during spall 
were used in [3]. In [3], it is assumed that if fragmentation takes place through development 
of microcracks, then the material is brittle; if through the inception, growth, and coale- 
scense of small cavities, it is plastic. The latter pertains to soft aluminum, copper, tin, 
and lead [3]. Such a definition of plastic materials gives a basis for using the quantity 
OeE c = 6 as the specific surface energy in the energy balance equation (gc ~ 0.15 is the 
critical strain). The resultant fracture stress takes the form 

~f  = 20c~%% = 0,3%E, (5 )  

where of does not depend on 6 or c, since according to [3], the value of o e (as for E in 
[i, 3]) is taken to be constant. 

Thus, according to [i], for geometrically similar changes of the dimensions of the exper- 
imental assembly, or for variation of ~ for brittle and plastic materials, the following is 
valid: 

~ 5 / ~  = const or oy(% ~) = const, (6)  

and according to [3], (6) also holds for brittle materials while at the same time (5) is 
valid for plastic materials, or 

af = const. (7) 

Let us turn to the experiment. In [3], soft aluminum and copper were treated as plastic 
materials. Is condition (7) satisfied by these materials? No. A series of works have used 
experimental results [7] on the spall strength of soft aluminum. From these, it follows that 
for a seven-fold increase in ~, of grows by a factor of 2.8. Data for copper and lead were 
also given. For copper, a 3.2-fold increase in ~ results in an increase in of by a factor of 
1.8. The tendency towards growth in of with increasing $ is also observed for lead, as noted 
in [8] as well. 

The spall strength of copper with change in ~ over a broad range (by a factor of i0-i0 s) 
was also studied in [9-11]. In of -6 coordinates, these results can be described by o~6 = 
const. For the experimental data in [9], n = 6.4, while for [I0, II], n = 5.3 and 5.4, re- 
spectively. Thus there are experimental results for the plastic materials used in the anal- 
ysis in [3] which do not support (7). 

In our opinion, the reason (7) is not satisfied is connected with the use of k, repre- 
sented by Oegc6 as the specific surface energy for plastic materials. Such a representation 

*According to the definition in [4], the threshold brittleness L 0 is the minimum value for a 
cubic rib being extended on opposite sides with a force oL 2. In this case, the elastic strain 
energy is still sufficient for brittle fracture (L 0 = 2XE/o~). 
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is equivalent to the assumption that structural defects accumulate throughout the entire 
material volume. As numerous experiments have shown, the defects are localized in the neigh- 
borhood of the fracture surface, regardless of the micromechanism of fracture development 
(microcracks or small cavities). Therefore, there is no basis for a change of the right- 
hand side of the energy balance equation (i) with change in the fracture micromechanism. 
And this signifies that there is no fundamental difference between brittle and plastic ma- 
terials during spall. 

The first attempts to experimentally verify (6) for spall, with the assumption X = const 
were made in [12]. In that work, it was noted that the actual values for the power exponent 
for af in (6) varies from 2 to 5.2 for different materials (steel, aluminum alloys, copper, 
titanium, aluminum, organic glass). The average value is ~3.5. The spallation of an aluminum 
alloy (a e = 333 MPa, af = 449 MPa) was studied in [13]. The experiments were done using im- 
pacting plates!which had geometrically similar assemblies with a four-fold change in scale. 
The results obtained are well represented by ant = const for n = 2.63. The same relation with 
n = 3.4 also describes experiments with uranium [3]. Thus the dependence of af on 6 or t is 
weaker than (6) [t is the duration time of the tensile pulse]. The most significant reason is 
the dependence X(t).* The assumption that X = const is, strictly speaking, indefensible. 
Thus, it is known that even for a material as brittle as glass, 2y (the analog of k) is sig- 
nificantly greater than the specific energy of free surface formation ~0, and that this dif- 
ference can be up to 104 times larger for different materials. Where is this energy expended 
during spallation? Fracture with energy expenditure k 0 can be attained by applying the ten- 
sile forces to two neighboring crystal planes. During real fracture, the forces on these 
planes are conveyed through a number of intermediate planes. The latter in no way differs 
from what is being considered. It is natural to assume that there will be partial fracture 
in these as well, which is confirmed in microphotographs. 

Thus with decreasing tensile pulse duration, down to t ~ 10 -13 sec, the value of k must 
drop to k0, while af grows to the theoretical strength af0. According to [12], for copper, 

= 4 J/cm 2 and af = 0.75 GPa when t = 3.10 -~ sec; while X0 = 3.3"10-4 J/cm2 and af0 = 35 
GPa when t ~ i0 -Is sec. Assuming ant = const, by using af and t and setting X = const, we 
obtain n = 3.9. By using the other pair of independent values of X and t and setting X ~ 
t m ~ 6m, we find m = 0.63. Substituting X(t) into (6), we have as,4t = const, or as,46 = 
const. These examples of computing X(t) for spall fracture indicate that the real dependence 
af(6) is considerably weaker and the value of the exponent in (i), (2), etc. may be 1.5-3 
times larger than 2. This result makes it possible to reduce the acuteness of the problem of 
the discrepancy in the experimentally determined exponents lying between 2 and 5.2 for a num- 
ber of metals [13]. We should note that [15] was the first work to draw attention to the pos- 
sible dependence X(t). 

Thus, regardless of the form of material fracture during static elongation (brittle or 
plastic), or the mechanism of fracture formation and development at the microlevel (by means 
of microcracks or of small cavities), there is no fundamental difference in the energy de- 
scription of spall failure of materials: in view of the characteristics of spall fracture, 
the most conservative value of X depends on the duration time of the tensile forces (or on 
the scale of the object). Therefore, the real value of the exponent on of in (2) and its 
analogs can grow by a factor of 1.5-3. 
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THE MOST RESTRICTIVE BOUNDS ON CHANGE IN THE APPLIED ELASTIC CONSTANTS 

FOR ANISOTROPIC MATERIALS 

N. I. Ostrosablin UDC 539.3:548.053 

A representation of the elastic constants tensor was given in [I], for the general 
anisotropic case, in a form which ensured positive definiteness of the specific strain energy 
and which indicates the strictest bounds for each elastic constant. In the same paper, there 
is reference to works in which this question had been previously addressed, and which stud- 
ied the general properties of the tensor of elastic constants. The limits of the variability 
of the elastic constants was also studied in [2, 3]. Formulas for the characterisi~ic elastic 
moduli and the states for materials of all crystallographic systems were obtained in [4]. 

In this work, explicit formulas for the applied elastic constants (Young's modulus, the 
shear and bulk moduli, Poisson's ratio) are given on the basis of the representation from 
[i] for the general anisotropic case. The formulas show the limits of variability of these 
constants. The appropriate formulas for the elastic constants for materials of all crystal- 
lographic systems are given. The strictest bounds (without refinement) on these constants 
which ensure a positive definite specific strain energy are established. 

i. In the matrix notation of [I, 4], Hooke's law and the specific strain energy are 
written as 

= A i i ~ ,  ei = ai j~;  (1.1) 
2 ~  = ~ie~ = AijsiEj = aUffi~]. (1.2) 

Here and below, repeated indices denote summation from 1 to 6. The matrices of the elastic 
constants Aij and aij are symmetric, and the quadratic form (1.2) is positive definite. 

As shown in [i], aij and Aij can be represented in the form 

aij = diciicji.-~ dzci2cj2 -~ dsci3cj3 -~ daci~cj4 + daciscj~ ~ d6ci6cj6,, 
c~p =- O ( p  > i ) ,  ci~ . . . .  - c66 = i ;  

= d-lc'=.Ic - I  Aij d{ic~Ic-~ 1 "6 d;Xc-~lc~ 1 A- 3 3~ ~; + d-4ic~lc-~ 1 "6 d~lc~ic~ 1 A- dElc~lc~ l, 

~* = o (p  > ~), oF# . . . .  = cg  ~ = I .  

( i .3)  

(1.4) 
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